Embrace database model through a functional paradigm.
...wait a minute, JDBC is blocking anyway
Everything is async...
db_pool_connections =
(core_count * 2) + effective_spindle_count
source: postgres docs
Brilliant presentation by @StefanZeiger: Reactive Slick for Database Programming
DBIO
Query
description of a DB query
description of 1...N DB operations
Future
well... you know
// in-application respresentation of table's tuple
case class University(name: String,
id: Long = -1L)
// definition of table
class UniversityTable(tag: Tag) extends Table[University](
tag, "university") {
def name = column[String]("name")
def id = column[Long]("id", O.PrimaryKey, O.AutoInc)
// default projection
def * = (name, id) <> (University.tupled,
University.unapply)
}
// 'table' object used for interacting with in app
lazy val UniversityTable = TableQuery[UniversityTable]
val futureResults = memDb.run(
UniversityTable
.filter(_.name === "Hogwarth") // Query
.result // DBIOAction (DBIO)
) // Future
// futureResults is of type
// Future[Seq[University]]
futureResults.onComplete {
case Success(unis) =>
for (uni <- unis) println(uni)
case Failure(e) =>
e.printStackTrace()
}
def executeReadOnly[R, S <: dbio.NoStream](
readOnlyOper: DBIOAction[R, S, Effect.Read] // param decl
): Future[Unit] = { // result type
db.run(readOnlyOper).map { results =>
log.info(s"Results are: $results")
}
}
// this works
executeReadOnly(UniversityTable.result)
// this won't even compile
executeReadOnly(UniversityTable += University("Nice try!"))
// DBIOAction[Seq[University], Stream, Effect.Read]
db.run(
UniversityTable.result
)
...
// DBIOAction[Option[Int], NoStream, Effect.Write]
db.run(
UniversityTable += University("California")
)
...
// DBIOAction[Option[Int], NoStream,
// Effect.Write with Effect.Transactional]
db.run(
DBIO.seq(
UniversityTable += University("Massachusetts"),
UniversityTable += University("California")
).transactionally
)
...
// DBIOAction[Unit, NoStream, Effect.Schema]
db.run(
UniversityTable.schema.create
)
UniversityTable
.filter(_.name === "Hogwarth")
What are unpacked (U), mixed (M) and collection (C) types?
UniversityTable
.filter(_.name === "Hogwarth")
// _ above is UniverityTable (M)
// unpacked type
case class University(name: String,
id: Long = -1L)
// mixed type
class UniversityTable(tag: Tag) extends Table[University](
tag, "university") {
def name = column[String]("name")
def id = column[Long]("id", O.PrimaryKey, O.AutoInc)
// default projection
def * = (name, id) <> (University.tupled,
University.unapply)
}
db.run( // Future[Seq[University]]
UniversityTable.filter(uni => // Query[UniversityTable,
// University, Seq]
uni.name === "Hogwarth"
)
.result // DBIO[Seq[University]]
)
select "NAME",
"MIDDLE_NAME",
"SURNAME",
"NATIONALITY",
"ID"
from "STUDENT"
StudentTable
// or
for {student <- StudentTable }
yield student
StudentTable
.map(_.name)
select "NAME"
from "STUDENT"
StudentTable
.filterNot(student =>
student.name === "Tom" &&
student.surname.startsWith("Smi")
)
// or
for {
student <- StudentTable if !(
student.name === "Tom" &&
student.surname.startsWith("Smi"))
} yield student
select "NAME",
"MIDDLE_NAME",
"SURNAME",
"NATIONALITY",
"ID"
from "STUDENT"
where not (("NAME" = 'Tom') and
("SURNAME" like 'Smi%' escape '^'))
StudentTable
.filter(student => student.middleName.nonEmpty)
.sortBy(s => (s.name.desc, s.middleName.asc))
.distinct
select distinct "NAME", ...
from "STUDENT"
where "MIDDLE_NAME" is not null
order by "NAME" desc, "MIDDLE_NAME"
StudentTable
.map(s => (s.name, s.surname))
.take(3)
.drop(2)
select ...
from "STUDENT"
limit 1 offset 3
Monadic
vs
applicative
// student course segment
case class StudentCourseSegment(studentId: Long,
courseId: Long,
semesterId: Long,
id: Long)
class StudentCourseSegmentTable(tag: Tag) extends
Table[StudentCourseSegment](tag, "STUDENT_COURSE_SEGMENT") {
def studentId = column[Long]("STUDENT_ID")
def courseId = column[Long]("COURSE_ID")
def semesterId = column[Long]("SEMESTER_ID")
def id = column[Long]("ID", O.PrimaryKey, O.AutoInc)
def * = (studentId, courseId, semesterId, id) <> (StudentCourseSegment.tupled,
StudentCourseSegment.unapply)
// foreign keys
def student = foreignKey("fk_segment_student", studentId, StudentTable)(_.id)
def course = foreignKey("fk_segment_course", courseId, CourseTable)(_.id)
def semester = foreignKey("fk_segment_semester", semesterId, SemesterTable)(_.id)
}
lazy val StudentCourseSegmentTable = TableQuery[StudentCourseSegmentTable]
def student =
foreignKey("fk_segment_student",
studentId, StudentTable)(_.id)
def course =
foreignKey("fk_segment_course",
courseId, CourseTable)(_.id)
def semester =
foreignKey("fk_segment_semester",
semesterId, SemesterTable)(_.id)
db.run((
for {
segment <- StudentCourseSegmentTable
course <- segment.course // foreign key
student <- segment.student // foreign key
} yield (course, student)
)
db.run(
StudentCourseSegmentTable
join CourseTable on (_.courseId === _.id)
join StudentTable on (_._1.studentId === _.id)
).map {
case ((segment, course), student) =>
(course, student)
}
)
Monadic
Applicative
StudentCourseSegmentTable
.join(StudentTable)
.on { case (segment, student) =>
student.id === segment.studentId }
.join(CourseTable)
.on { case ((segment, _), course) =>
course.id === segment.courseId }
.join(SemesterTable)
.on { case (((segment, _), _), semester) =>
semester.id === segment.semesterId }
.filter { case (((_, student), _), _) =>
student.name === "Tim"
}
select x2."NAME",
...
from "STUDENT_COURSE_SEGMENT" x2,
"STUDENT" x3,
"COURSE" x4,
"SEMESTER" x5
where (x3."NAME" = 'Tim') and
(((x3."ID" = x2."STUDENT_ID") and
(x4."ID" = x2."COURSE_ID")) and
(x5."ID" = x2."SEMESTER_ID"))
for {
segment <- StudentCourseSegmentTable
student <- segment.student if student.name === "Tim"
course <- segment.course
semester <- segment.semester
} yield (segment, student, course, semester)
select x2."NAME",
...
from "STUDENT_COURSE_SEGMENT" x2,
"STUDENT" x3,
"COURSE" x4,
"SEMESTER" x5
where (x3."NAME" = 'Tim') and
(((x3."ID" = x2."STUDENT_ID") and
(x4."ID" = x2."COURSE_ID")) and
(x5."ID" = x2."SEMESTER_ID"))
DocumentTable
.joinLeft(StudentTable).on(_.studentId === _.id)
.filter { case(doc, student) =>
student.map(_.name) === "Tom"
}
select x2."STUDENT_ID", ..., x3."ID", ...
from "DOCUMENT" x2
left outer join "STUDENT" x3
on x2."STUDENT_ID" = x3."ID"
where x3."NAME" = 'Tom'
db.run(
(UniversityTable ++= Seq(
University("Hogwart"),
University("Scala University")
)).transactionally
)
db.run(
(for {
dbio1 <- insertUnis
dbio2 <- ...
dbio3 <- ...
...
dbioN <- ...
} yield {
...
}).transactionally
)
def insertUnis: DBIO[Option[Int]] =
UniversityTable ++= Seq(
University("Hogwart"),
University("Scala University")
)
val combined: DBIO[Seq[T]] = DBIO.sequence(
Seq(
produceDbOper1, // DBIO[T]
produceDbOper2, // DBIO[T]
produceDbOper3 // DBIO[T]
)
)
db.run( // Future[Seq[Seq[Course]]]
for {
students <- StudentTable.result
courses <- DBIO.sequence(students.map(fetchMoreData))
} yield {
courses
}
)
...
private def fetchMoreData(student: Student):
DBIO[Seq[Course]] = {
(for {
segment <- StudentCourseSegmentTable
if segment.studentId === student.id
course <- segment.course
} yield {
course
}).result
}
def execTransact[T](dbio: DBIO[T]): Future[T] =
db.run(dbio.transactionally)
Future / DBIO / Query
Slick is not ORM
DBIO composition
Think in terms of Collection API
The Slick profiles (previously called “drivers”) for DB2, Oracle and SQL Server are now part of the core open source release. There is no separate Slick Extensions release anymore.
Slick docs: http://slick.lightbend.com/docs/
Online workshop by Dave Gurnell: https://vimeo.com/148074461
Excelent book: http://underscore.io/books/essential-slick/
https://github.com/liosedhel/play-slick-unicorn-example
GamesTable.join(UsersTable).on(_.placeId === _.id)
Wrong!
import org.virtuslab.unicorn._
case class UserId(id: Long)
extends BaseId[Long]
case class UserRow(
id: Option[UserId],
email: String,
firstName: String,
lastName: String
) extends WithId[Long, UserId]
class UsersTable(tag: Tag)
extends IdTable[UserId, UserRow](tag, "users") {
def email = column[String]("email")
def firstName = column[String]("first_name")
def lastName = column[String]("last_name")
override def * =
(id.?, email, firstName, lastName)
<>
(UserRow.tupled, UserRow.unapply)
}
val UsersTable = TableQuery[UsersTable]
GamesTable.join(UsersTable).on(_.placeId === _.id)
Compilation Error - Cannot perform option-mapped operation
class UsersDao
extends BaseIdRepository[
UserId, UserRow, UsersTable
](UsersTable)
//methods you get for free
def findById(id: Id): DBIO[Option[Entity]]
def findExistingById(id: Id): DBIO[Entity]
def findByIds(ids: Seq[Id]): DBIO[Seq[Entity]]
def deleteById(id: Id): DBIO[Int]
def save(elem: Entity): DBIO[Id]
def saveAll(elems: Seq[Entity]): DBIO[Seq[Id]]
//... and more
class GamesUsers(tag: Tag)
extends JunctionTable[GameId, UserId](tag, "games_users") {
def gameId = column[GameId]("game_id")
def userId = column[UserId]("user_id")
def game = foreignKey("game_fk", gameId, GamesTable)(_.id)
def user = foreignKey("user_fk", userId, UsersTable)(_.id)
def pk = primaryKey("games_users_pk", (gameId, userId))
override def columns = gameId -> userId
}
val GamesUsersTable = TableQuery[GamesUsers]
class GamesUsersDao
extends JunctionRepository[GameId, UserId, GamesUsers](
GamesUsersTable
)
https://dzone.com/articles/onion-architecture-is-interesting
import org.virtuslab.unicorn._
trait UserBaseRepositoryComponent {
protected val unicorn: Unicorn[Long] with HasJdbcDriver
import unicorn._
import unicorn.driver.api._
class UsersTable(tag: Tag) extends IdTable ...
val UsersTable = TableQuery[UsersTable]
class UsersDao extends BaseIdRepository ...
}
trait GamesBaseRepositoryComponent
extends UsersBaseRepositoryComponent {
import unicorn._
import unicorn.driver.api._
class Games(tag: Tag)
extends IdTable[GameId, GameRow](tag, "games"){
def organizerId = column[UserId]("organizer_id")
def organizer =
foreignKey("organizer_fk", organizerId, UsersTable)(_.id)
...
override def * = ...
}
}
@Singleton
class UsersRepositoryJdbc
@Inject() (val unicorn: UnicornPlay[Long])
(implicit ec: ExecutionContext)
extends UsersBaseRepositoryComponent
with UserRepository[DBIO]
with DbioMonadImplicits{
val usersDao = new UsersDao
def findByUserId(userId: UserId): OptionT[DBIO, User] = {
OptionT(usersDao.findById(userId))
.map(toDomain)
}
def toDomain(userRow: UserRow): User = {
import userRow._
User(userRow.id, firstName)
}
}
def toDomain(gameRow: GameRow): OptionT[DBIO, Game] = {
for {
organizer <- usersRepository
.findByUserId(gameRow.organizerId)
place <- placeRepository
.findByPlaceId(gameRow.placeId)
} yield Game(
gameRow.id,
organizer,
gameRow.note,
gameRow.date,
place
)
}
import unicorn.driver.api._
def doTransactionalOperations(gameId1: GameId,
gameId2: GameId) = Action.async {
unicorn.db.run{
DBIO.seq(
gameRepository.deleteGame(gameId1),
gameRepository.deleteGame(gameId2)
).transactionally
}.map(_ => Ok)
}
trait UserRepository[F[_]] {
def findByUserId(userId: UserId): OptionT[F, User]
}
Get rid of DBIO from domain!
@Singleton
class StatisticsService[F[_]: Monad] @Inject()(
gamesUsersRepository: GamesUsersRepository[F]
) {
def rootMeanSquareOfPlayersPerGame(): F[Double] = {
for {
gamesAndParticipants <-
gamesUsersRepository.findGamesAndParticipantsNumber()
} yield {
val numberOfGames = gamesAndParticipants.size
val nominator = gamesAndParticipants
.map{case (_, p) => p * p}.sum
if(numberOfGames <= 0)
0
else
Math.sqrt(nominator / numberOfGames)
}
}
}
Noel Markham - A purely functional approach to building large applications www.youtube.com/watch?v=V1d3OYYez7s
"Statistics service" should
"compute mean square number of players per game" in {
Given("statistic service with repository mock")
val gamesUsersRepositoryMock =
mock[GamesUsersRepository[Id]]
val statisticService =
new StatisticsService(gamesUsersRepositoryMock)
val gamesAndParticipants =
Seq((GameId(1), 2), (GameId(2), 2))
(gamesUsersRepositoryMock.findGamesAndParticipantsNumber _)
.expects().returning(gamesAndParticipants)
When("calculating the root mean square")
val averageNumberOfPlayersPerGame =
statisticService.rootMeanSquareOfPlayersPerGame()
Then("average must be calculated properly")
averageNumberOfPlayersPerGame shouldBe 2
}
Cool toolz in the Scalaz and Cats toolboxes by Jan Pustelnik, Scalar Conf 2016
@Singleton
class AsyncController @Inject()(
unicorn: UnicornPlay[Long],
statisticsService: StatisticsService[DBIO]
)(implicit exec: ExecutionContext) extends Controller {
def averageNumberOfPlayersPerGame() = Action.async{
unicorn.db.run {
statisticsService.averageNumberOfPlayersPerGame()
}.map(average => Ok(Json.toJson(average)))
}
}
//GUICE
bind(new TypeLiteral[UnicornPlay[Long]](){})
.to(classOf[LongUnicornPlayJdbc])
bind(new TypeLiteral[GamesUsersRepository[DBIO]](){})
.to(classOf[GamesUsersRepositoryJdbc])
for {
segment <- StudentCourseSegmentTable
student <- segment.student if student.name === "Tim"
course <- segment.course
semester <- segment.semester
} yield (segment, student, course, semester)
DEBUG s.c.QueryCompilerBenchmark - ------------------- Phase: Time ---------
DEBUG s.c.QueryCompilerBenchmark - assignUniqueSymbols: 0.446286 ms
DEBUG s.c.QueryCompilerBenchmark - inferTypes: 0.239283 ms
DEBUG s.c.QueryCompilerBenchmark - expandTables: 0.984031 ms
DEBUG s.c.QueryCompilerBenchmark - forceOuterBinds: 1.048910 ms
DEBUG s.c.QueryCompilerBenchmark - removeMappedTypes: 0.536035 ms
DEBUG s.c.QueryCompilerBenchmark - expandSums: 0.016068 ms
DEBUG s.c.QueryCompilerBenchmark - emulateOuterJoins: 0.108066 ms
DEBUG s.c.QueryCompilerBenchmark - expandRecords: 0.421471 ms
DEBUG s.c.QueryCompilerBenchmark - flattenProjections: 2.212847 ms
DEBUG s.c.QueryCompilerBenchmark - rewriteJoins: 2.219579 ms
DEBUG s.c.QueryCompilerBenchmark - verifySymbols: 0.204175 ms
DEBUG s.c.QueryCompilerBenchmark - relabelUnions: 0.086386 ms
DEBUG s.c.QueryCompilerBenchmark - createAggregates: 0.013349 ms
DEBUG s.c.QueryCompilerBenchmark - resolveZipJoins: 0.126179 ms
DEBUG s.c.QueryCompilerBenchmark - pruneProjections: 0.567347 ms
DEBUG s.c.QueryCompilerBenchmark - rewriteDistinct: 0.018858 ms
DEBUG s.c.QueryCompilerBenchmark - createResultSetMapping: 0.274411 ms
DEBUG s.c.QueryCompilerBenchmark - hoistClientOps: 0.649790 ms
DEBUG s.c.QueryCompilerBenchmark - reorderOperations: 0.643005 ms
DEBUG s.c.QueryCompilerBenchmark - mergeToComprehensions: 4.482695 ms
DEBUG s.c.QueryCompilerBenchmark - optimizeScalar: 0.179255 ms
DEBUG s.c.QueryCompilerBenchmark - removeFieldNames: 1.145481 ms
DEBUG s.c.QueryCompilerBenchmark - codeGen: 3.783455 ms
DEBUG s.c.QueryCompilerBenchmark - TOTAL: 20.406962 ms
val query = Compiled { name: Rep[String] =>
for {
segment <- StudentCourseSegmentTable
student <- segment.student if student.name === name
course <- segment.course
semester <- segment.semester
} yield (segment, student, course, semester)
}
...
...
db.run(query("Tim").result)
Property age = Property.forName("age");
List cats = sess.createCriteria(Cat.class)
.add( Restrictions.disjunction()
.add( age.isNull() )
.add( age.eq( new Integer(0) ) )
.add( age.eq( new Integer(1) ) )
.add( age.eq( new Integer(2) ) )
) )
.add( Property.forName("name").in(
new String[] { "Fritz", "Izi", "Pk" } )
)
.list();
StudentTable.filter(row: StudentTable => ...)
StudentTable.filter(myExtractedFilter)
def myExtractedFilter(row: StudentTable): Rep[Boolean] = {
row.name === "Tom" && row.nationality === "American"
}
StudentTable
.map(s => (s.name, s.surname))
.distinctOn(_._1)
select "NAME", min("SURNAME")
from "STUDENT"
group by "NAME"
StudentTable
.filter(_.surname =!= "Test")
.groupBy(_.surname)
.map { case (surname, group) =>
(surname, group.map(_.name).countDistinct)
}
.filter(row => row._2 > 5)
select "SURNAME", count(distinct "NAME")
from "STUDENT"
where not ("SURNAME" = 'Test')
group by "SURNAME"
having count(distinct "NAME") > 5